

 Navigation

 	
 index

 	
 next |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Build Worlds in Minecraft with Python Documentation Contents

This is the master table of contents. However, you will probably find
the Overview Page to be more user-friendly.

	Classroom Documentation
	Overview of Today’s Class

	First Steps for Setup

	Connect to Wi-Fi

	Connect to Your Lab Instance

	Testing the Setup

	Prepared Exercises

	Other Scripts to Explore

	Doing Your Own Thing

	Controlling Minecraft from Python

	Minecraft Controls

	Resources

	Other Setups
	Setup for a Vagrant-Based Environment

	Setup for Microsoft Windows

	Setup for Apple’s OS X

	Setup for Ubuntu Linux

	Mentor Documentation
	Being a CoderDojo Mentor

	Being a Python Minecraft Mentor

	Lessons Learned

	The Lab Server

	Project Technology

	Project Maintenance

	Reference
	Overview of the Architecture

	Python Minecraft FAQ
	Why can’t I...

	How do I...

	Why is...

	Glossary

	Documentation Needing Work

	Release Notes
	Unreleased Changes

	2015-08-01

	2015-05-09

	2015-02-21

	2015-02-07

	2015-01-24 and Before

Indices and Tables

	Index

	Search Page

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Build Worlds in Minecraft with Python

This documentation supports the CoderDojo Twin Cities’ [http://www.coderdojotc.org/] Build
worlds in Minecraft with Python code group. This group intends to
teach you how to use Python [https://www.python.org], a general purpose programming language,
to mod the popular game called Minecraft [https://minecraft.net/]. It is targeted at students
aged 10 to 17 who have some programming experience in another
language. For example, in Scratch [http://scratch.mit.edu/].

In the Classroom?

Are you in the classroom right now? This section is for you! Visit the
first page linked below (hint: it reads Overview), read through the
material, and then click through the link under the Next
topic heading on each page to work through all the documentation.

	Today’s class:
Overview

	Setup:
First steps |
Connect to Wi-Fi |
Connect to your lab instance |
Test the setup

	Getting to work:
Prepared exercises |
Other scripts to explore |
Doing your own thing

	Reference material:
Controlling Minecraft from Python |
Minecraft controls |
Other resources

	Architecture Overview: The architecture overview explains the major components of the
environment we use for our exercises.

Getting Help

Having trouble? Here are some pointers this might be useful:

	If you are reading an off-line version of our documentation, you
might want to refer to the authoritative site [http://coderdojotc.readthedocs.org/projects/python-minecraft/en/latest/]. This site will
always have the latest and greatest material.

	Take a look at the FAQ. We are loading this up
with answers to common questions. Maybe the answer to your question
is already here.

	Looking for specific information? You might find it in the
detailed table of contents, or you might be able
to use the Search Page or Index to help you locate it.

	Our glossary might define a term that is new to
you.

	If something seems different than the way it was before, consult the
release notes for more detail.

	If something is still unclear, we really would like to know. Please
visit our ticket tracker [https://github.com/CoderDojoTC/python-minecraft/issues] to let us know about the problem. Use
the New Issue button.

Other Setups

Here are some instructions for setting up software to support
different circumstances:

	At Home, The Easy Way: If you are interested in recreating the
environment we use in the CoderDojo lab, but for a single user, on
your own PC, you should consult our guide for Vagrant.

	At Home, The Hard Way: If you are interested in installing all
the software needed to run these examples directly on your PC
(without using Vagrant to simplify the job), we currently have a
guide that covers doing so on Windows. Users
of other platforms can consult this guide and try to adapt it for
their circumstances. Ultimately, we intend to also provide guides
for Apple’s OS X and Ubuntu Linux.

Mentors

Mentors need docs too! Here they are:

	Core Mentor Guide:
Being a CoderDojo mentor |
Being a Python Minecraft mentor

	Python Minecraft Project Technology:
Project technology |
Project maintenance |
Running a lab server

Copyright

This document and the supporting code has been created by multiple
contributors [https://github.com/CoderDojoTC/python-minecraft/graphs/contributors].

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Classroom Documentation

The section contains documentation useful for participants in a
CoderDojo classroom event. Visit each of the links below to find the
documentation needed to get set up and then work through the classroom
exercises of the Build worlds in Minecraft with Python code group.

First, we start with an overview:

	Overview of Today’s Class

Next, we want to be sure you have all the pieces set up to work
through the exercises:

	First Steps for Setup

	Connect to Wi-Fi

	Connect to Your Lab Instance

	Testing the Setup

After you are set up, you’re ready to tackle the meat of the class:

	Prepared Exercises

	Other Scripts to Explore

	Doing Your Own Thing

Finally, some reference material you might need:

	Controlling Minecraft from Python

	Minecraft Controls

	Resources

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Overview of Today’s Class

This section describes how we normally work in the CoderDojo classroom
and what to expect in today’s session.

Organization and Introductions

We try to have around three students per mentor. After you first get
settled into your seat, take a few moments to get to know the mentors
and the other students sitting near you. Here are some example
questions to break the ice:

	What’s your name?

	What grade are you in? Or for mentors, what year were you last in
school?

	Have you attended (or mentored) this class before?

	What kind of experience do you have with programming?

	Why did you come to this class today? What are you hoping to do or
learn?

Be sure to talk to the people around you. You may have something to
teach them, and they may know something you want to learn. This isn’t
a library, so you won’t get into trouble for talking. Making friends,
sharing stories, and working together are all OK.

Learning Objectives

Here are some of the things you will learn while participating in
today’s class:

	How to read, write, and run code in IPython

	Basic Python syntax

	How to change the Minecraft world using Python

	How to have the Minecraft world trigger activity in Python

	Anything else you want! Be sure to talk to a mentor if there is
something specific you are looking to learn.

Order of Events

Here’s how things typically happen in the CoderDojo classroom:

	Get connected. This means getting your PC onto the Wi-Fi network,
and then getting connected to your lab instance.

	Work through each exercise. We have several exercises, each
designed to teach you different things about the IPython notebook
environment, Python programming, and interacting with Minecraft
through Python code. The exercises are numbered, and it’s a good
idea to tackle them in order.

	Look at the other examples. See if you can understand what they do,
and think about how you might want to change them. Then give it a
try!

Ground Rules

In CoderDojo, the one rule is “be cool”. Putting this into
practice in the classroom, you can be cool by:

	Helping each other. Check with other students before asking a
mentor for help. “Ask three, then me,” is a good rule of thumb.

	Learning Python. Today’s focus is on programming, not the game
of Minecraft. Remember, this is a CoderDojo, not a LAN party!

Now that you know how this class works, it’s time to learn how to get
started with the first steps for setup.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

First Steps for Setup

To participate in today’s classroom activities, you need a few things:

	Get a PC. If you brought your own, you’re set. Plug it in and get
comfortable. If not, look for an unoccupied classroom PC at one of
the Python-Minecraft tables. If none are available, talk to a
mentor.

	Next, talk to mentor to get your lab instance connection
card. This card has the unique details you need to connect to the
instance. We will need your Mojang account name (the player name,
inside Minecraft) so we can set up your instance and give your
player permission to connect to it. If you don’t have a Mojang
account, we have several available for use in the classroom.

	Make sure your PC is connected to Wi-Fi. If you are using a
classroom PC, this may have already been set up. This is covered in
more detail in the Wi-Fi instructions.

	Connect to your IPython Notebook and Minecraft worlds. If you are
using a classroom PC, this may have already been set up. This is
covered in more detail in the lab instance setup instructions.

	Test the connection between Python and Minecraft. Even if you are
using a classroom PC, it is good to test out the connection
yourself. Instructions are here.

Now that you have a high-level understanding, make sure you have
Wi-Fi setup.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Connect to Wi-Fi

The username and password needed you need to connect to the campus
Wi-Fi is printed on the name badge passed out to each student and
mentor. These credentials are only good for the day of the session, so
if you have credentials saved on your computer from a prior session,
you will need to delete them and use the ones on your name
badge. These credentials are good for a single device (e.g., one
laptop). If you need an extra set of credentials for additional
devices, check with one of the mentors.

The official documentation for connecting to the UMN campus Wi-Fi is
available in the WiFi Setup Guides [http://it.umn.edu/wifi-setup-guides]. You should look at the section
for your specific operating system under the heading UoM Secure.

That said, you might be able to muddle through setting up a connection
using only the key bits of information below:

	Connect to the UofM Secure SSID. Other networks might seem to
work (e.g., UofM Guest), but they are bandwidth-restricted. You
will have Internet connectivity, but will be terribly slow.

	Choose WPA2-Enterprise security.

	Choose AES encryption.

	If you’re only visiting the campus for a short time to participate
in a CoderDojo event, it is probably unnecessary to configure the
Protected EAP properties or to mess around with any advanced
settings like 802.1X or its certificates. Skipping those steps means
you can’t be positive that your PC is talking to the
University-provided Wi-Fi infrastructure, but the risk is pretty
low.

Warning

However, if you live, study, or work on campus, take
the extra time to go through all the setup steps in the
official documentation so you stay secure.

Once Wi-Fi is working and you are able to visit websites (try the
CoderDojo site [http://www.coderdojotc.org/]), move on to connecting to your lab instance.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Connect to Your Lab Instance

Once you are connected to Wi-Fi, you need to turn your
attention to connecting your PC to the IPython Notebook and the
Minecraft world in your lab instance. The diagram below
illustrates what sits where:

[image: ../_images/programming-environment.png]
The architecture guide explains a
bit more about the peices in this diagram.

Lab Instance Connection Card

Your lab instance connection card has all the critical
information, so make sure you have it in hand, and make sure the
Mentor who took your account name has had time to set up your instance
on the lab server. If so, you’re ready to proceed.

The connection card looks something like the following:

[image: ../_images/lab-instance-connection-card.png]
Key information found on this card:

	Your Instance Number. In the upper right corner of the card is your
Lab Instance Number. If you need to ask a mentor to restart your
instance, they will need to know your instance number.

Note

Too much TNT? A pyramid made out of beds or water? A
restart can get you going again quickly.

	The IPython URL. It looks something like
https://python.coderdojotc.org:12356/. Many people miss the
S in the https part of the URL. Many other people miss the
numbers that follow the domain name. Both of these are critical to
connect to your instance.

	The IPython password. When you first connect, you will be asked for
a password to make sure only you can access the IPython notebook
server in your instance.

	Your Minecraft/Mojang account name. This is printed on the line that
reads “Step 3: Connect to the Minecraft Server as coderdojo##”
This is the account you should use to log into the Minecraft
world. Only this account will be able to make changes in your world.

	Your Minecraft server address. This looks very similar to the
IPython URL, but it just contains the server name
(python.coderdojotc.org) and a port number (the digits following
the colon).

Connect to the IPython Notebook

The steps involved in connecting to IPython include:

	Open your web browser. You need to use Chrome, Firefox, or IE 11 or
newer. Safari is known to not work, at least on older Macs.

	Visit the URL given on the connection card. The browser will
probably complain that it doesn’t trust the site. Proceed past the
warnings.

	Enter the IPython password when prompted.

You should see a screen like the one below:

[image: ../_images/ipython-notebook.png]

Connect to the Minecraft Server

The steps involved in connecting to Minecraft include:

	Launch Minecraft on your PC. If you haven’t already installed and
played Minecraft on your PC, visit the Minecraft download page [https://minecraft.net/download]. Download and install the
appropriate version for your operating system.

	You will need to log into Minecraft. The account name is printed on
the connection card. A mentor will need to log you in. If you are
working through these exercises at home, use your personal
Minecraft account.

	Create a profile and make sure it uses the latest patch in the 1.8
release series. For example, you can specify release 1.8.4 of
the game. The image below illustrates what a properly configured
profile will loook like:

[image: ../_images/minecraft-profile.png]

	After saving the profile (if necessary), click Play to
launch it.

	Choose Multiplayer, then choose Direct Connect.

	In the Server Address field, enter the Minecraft Server
address from your connection card, including the port number at the
end.

	Finally, click Join Server. After a brief delay, you
should see your Minecraft world.

Once you can talk to the IPython notebook server and the Minecraft
server, you need to make sure they can talk to each other. Continue on
to test your environment.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Testing the Setup

A very basic test will show you whether the connection is working
between the Minecraft server and the IPython notebook server.

	In IPython, click on the exercises folder to navigate
to where the classroom exercises are stored.

	Click on Exercise 1 – Hello World! to open the
notebook for the first exercise. Your screen should look roughly
like the following:

[image: ../_images/hello-world-notebook.png]

	Choose Cell ‣ Run All from the menu.

	In the Minecraft game, look for the Hello Minecraft!
message. If you don’t see it, try opening chat by typing
T. You should see something like the following:

[image: ../_images/hello-world-minecraft.png]

If this works, fantastic! You are ready to continue on with the
exercises.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Prepared Exercises

We have a handful of exercises prepared for your exploration in the
classroom. The exercises should be visible in your IPython notebook
session, under the folder named exercises. If you cannot see
the exercises folder in IPython, click on the icon of the
house to navigate to the top level folder.

	Exercise 1: Hello World!

	You’ve probably already walked through this exercise as part of
testing your environment, but later on, you might see if you can
change it to do something more interesting, like saying your name
or printing the current time.

	Exercise 2: Getting Started with IPython

	This exercise gets you familiar with the IPython environment.

	Exercise 3: Basic Python Syntax

	This exercise introduces you to the core syntax of the Python
language.

	Exercise 4: Change the Minecraft world using Python

	This exercise helps you use Python to make changes within the
Minecraft world.

	Exercise 5: Minecraft changes trigger activity in Python

	This exercise shows you how Python can detect when something has
happened in the Minecraft world so it can react.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Other Scripts to Explore

In addition to the prepared IPython exercises, your IPython instance
has access to plenty of other IPython examples. The examples should be
visible in your IPython notebook session, under the folder named
examples. If you cannot see the examples folder in
IPython, click on the icon of the house to navigate to the top level
folder.

Here are some that might be fun to play with:

Simple Sripts

These scripts are pretty simple, and good places for beginners to
start:

blink

This simple script creates a block that flips between different
block types, making it seem to blink.

Moderate Sripts

These scripts are a step more complex. Move on to these when you are
ready for a challenge.

brooksc_tntsnake

This script makes a “snake” of TNT through your world.

sphere

This script creates spherical objects in your Minecraft world.

sphere_hollow

This script shows you how to make spheres hollow: fill them with
air. This technique comes in handy in other places, too.

Advanced Sripts

These scripts are really complex. If you can figure these out, you are
ready to make your own Mods.

sleepyoz_analogclock

This script draws and animates an analog clock in your Minecraft
world. Really cool.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Doing Your Own Thing

Once you’ve gone through the exercises and explored some of the other
pre-existing scripts, here are some activities you can try when you’re
ready to create your own Mod:

	Imagine what you want your Mod to do. Think through the behaviors a
player will see. Think about what they can’t see. Try to write it
down.

	Next, see if you can explain it to another person. Was anything
unclear? Did they see any problems that you need to fix?

	Talk to a mentor or another student about how they might tackle
this challenge in Python.

	Look through existing code for something that seems similar. It’s
often easier to start from something that already exists, making
the changes you need, than starting from scratch.

	If you do have to start from scratch, try writing little bits at a
time and testing them out. That way, you can tell if you are on the
right track or not.

Finally, show it off. If you create something cool, please
share. Maybe it will be an example for future students to study some
day!

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Controlling Minecraft from Python

Coordinate System

Most coordinates are in the form of a three integer vector (x,y,z)
which address a specific tile in the game world. (0,0,0) is the spawn
point sea level. (X,Z) is the ground plane, and Y is towards the
sky. In other words, X is left and right, Z is forward and backward,
and Y is up and down.

[image: ../_images/coordinates.png]
Minecraft’s odd x-y-z coordinate system

Minecraft Programming Reference

These are just a few highlights. A more detailed reference can be
found in the full API reference [http://www.stuffaboutcode.com/p/minecraft-api-reference.html].

World

	
world.getBlock(x, y, z)

	Look up the type of block at the specified coordinates.

	
world.setBlock(x, y, z, block_type)

	Set the block at the specified coordinates to the type block_type.

	
world.setBlocks(x1, y1, z1, x2, y2, z2, block_type)

	Create a set of blocks starting at one coordinate point extending
to another point with blocks of the type block_type. This can be
used to make cubes or rectangles.

	
world.getHeight(x, z)

	Look up the height (y coordinate) of the tallest brick at the
specified x and y coordinates.

	
world.postToChat("Message")

	Send a message over chat.

Player

	
player.getPos()

	Look up the coordinates that the player is currently positioned at.

	
player.setPos(x, y, z)

	Set the player’s position to the specified coordinates.

Blocks

As is the case in most things related to programming, the
mcpi/block.py source code file [https://github.com/CoderDojoTC/python-minecraft/blob/master/mcpi/block.py] is the ultimate authority
for which blocks are available for your use. The table below lists
those constants and includes a few notes about some of the blocks.

	Block Name
	Notes

	AIR
	

	STONE
	

	GRASS
	

	DIRT
	

	COBBLESTONE
	

	WOOD_PLANKS
	Use block_data to control what kind of planks.

	SAPLING
	

	BEDROCK
	

	WATER_FLOWING
	

	WATER
	An alias for WATER_FLOWING

	WATER_STATIONARY
	

	LAVA_FLOWING
	

	LAVA
	An alias for LAVA_FLOWING

	LAVA_STATIONARY
	

	SAND
	

	GRAVEL
	

	GOLD_ORE
	

	IRON_ORE
	

	COAL_ORE
	

	WOOD
	Use block_data to control what kind of wood.

	LEAVES
	

	GLASS
	

	LAPIS_LAZULI_ORE
	

	LAPIS_LAZULI_BLOCK
	

	SANDSTONE
	

	BED
	

	COBWEB
	

	GRASS_TALL
	

	WOOL
	Use block_data to control what color wool.

	FLOWER_YELLOW
	

	FLOWER_CYAN
	

	MUSHROOM_BROWN
	

	MUSHROOM_RED
	

	GOLD_BLOCK
	

	IRON_BLOCK
	

	STONE_SLAB_DOUBLE
	

	STONE_SLAB
	

	BRICK_BLOCK
	

	TNT
	

	BOOKSHELF
	

	MOSS_STONE
	

	OBSIDIAN
	

	TORCH
	

	FIRE
	

	STAIRS_WOOD
	

	CHEST
	

	DIAMOND_ORE
	

	DIAMOND_BLOCK
	

	CRAFTING_TABLE
	

	FARMLAND
	

	FURNACE_INACTIVE
	

	FURNACE_ACTIVE
	

	DOOR_WOOD
	

	LADDER
	

	RAIL
	

	STAIRS_COBBLESTONE
	

	DOOR_IRON
	

	REDSTONE_ORE
	

	SNOW
	

	ICE
	

	SNOW_BLOCK
	

	CACTUS
	

	CLAY
	

	SUGAR_CANE
	

	FENCE
	

	GLOWSTONE_BLOCK
	

	BEDROCK_INVISIBLE
	

	STONE_BRICK
	

	GLASS_PANE
	

	MELON
	

	FENCE_GATE
	

	GLOWING_OBSIDIAN
	

	NETHER_REACTOR_CORE
	

The underlying engine actually provides all of these block types [http://minecraft.gamepedia.com/Data_values_(Pocket_Edition)].
If you see one is missing from the MCPI block module, you are free
to edit mcpi/block.py to add more blocks using the decimal
value listed and following the pattern you find in the existing code.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Minecraft Controls

This is a brief synopsis. For more details, see the Controls article [http://minecraft.gamepedia.com/Controls].

Keyboard

	Keys
	Function

	W
	Move forward (or up, when navigating inventory)

	A
	Move left

	S
	Move backward (or down, when navigate inventory)

	D
	Move right

	Space
	Jump, double tap to start/stop flying, hold to fly higher

	Shift
	Sneak, hold to fly lower

	E
	Open inventory

	Number keys
	Select inventory slot item to use

	Esc
	Show/hide menu

	Tab
	Release mouse without showing menu

	Enter
	Confirm menu selection

Mouse

	Movement
	Result

	Steer
	Look/turn around

	Left button
	Remove block (hold)

	Right button
	Place block, hit block with sword

	Mouse wheel
	Select inventory slot item to use

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Classroom Documentation

Resources

Python Programming

	The Python Docs [https://docs.python.org/2/] cover everything you
could possibly want to know about Python.

	This Python cheat sheet [http://www.cheatography.com/davechild/cheat-sheets/python/]
provides a concise reference for some common Python syntax.

Online Coding Classes

	Codecademy [http://www.codecademy.com/]

	LearnPython.org [http://www.learnpython.org/]

	Udacity [https://www.udacity.com/]

More about the Minecraft API

	The Minecraft PI Worksheet [https://docs.google.com/document/d/1gDoaiSKq6OOSk1GditlkGJnt8qdZ119eW67L-UTkFRI/edit?usp=sharing]
provides a simple introduction to programming Minecraft with Python.

	MCPi API Basics [http://www.stuffaboutcode.com/2013/01/raspberry-pi-minecraft-api-basics.html]

	MCPi API Tutorial on StuffAboutCode.com [http://www.stuffaboutcode.com/2013/04/minecraft-pi-edition-api-tutorial.html]

	The MCPi API Reference [http://www.stuffaboutcode.com/p/minecraft-api-reference.html] has
a useful summary of all the things possible in the Python Minecraft
API.

	MCPi API Examples [http://www.stuffaboutcode.com/2013/02/raspberry-pi-minecraft-install.html]

	More MCPi scripts [https://github.com/brooksc/mcpipy]

Note

Although the StuffAboutCode links discuss using an Raspberry
Pi, you don’t need a Raspberry Pi to use the API. We’re
using CanaryMod server instead with the RaspberryJuice
plugin. More information about that is in the
architecture guide.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Other Setups

When you are participating in a CoderDojo class, we host a lab server
so that most of the setup is already done for you. However, if you
want to do these exercises on your home PC, you will need to choose
one of the approaches described below.

Setting up environments like this can be tricky. The simplest way is
to use a tool called Vagrant, and described in the chapter below.

	Setup for a Vagrant-Based Environment

If you don’t use Vagrant, you need to perform many, many more
steps. These steps depend on the operating system you are using. The
chapters below give you some instructions for these steps:

	Setup for Microsoft Windows

	Setup for Apple’s OS X

	Setup for Ubuntu Linux

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Other Setups

Setup for a Vagrant-Based Environment

A Vagrant-based environment is the preferred way to replicate our
classroom environment on your home PC. It is relatively easy to
install, especially when compared with installing all the different
software components one-by-one, directly on your PC. It also provides
a consistent working environment, so all our other instructions only
need to be written once, instead of once for each operating
system. Finally, Vagrant-based environments are becoming more and more
common in professional software development organizations, so becoming
familiar with this technology will serve students well in the future.

Resulting Environment

Once you are done following these instructions, you will have a
command line tool provided by Vagrant. Using Vagrant, you will
be able to create a lab environment inside a virtual machine running
on your PC. This environment will behave just like the one we use in
the CoderDojo classrooms, so you will be able to follow along with all
the examples.

Installation Steps

These steps outline the tasks you need to perform to be able to use
our Vagrant-based lab environment.

Step 1: Install Vagrant

Vagrant is free, open source software from HashiCorp that helps
recreate development environments from a simple set of instructions
that Vagrant understands. A development environment is a computer
setup where authors of software have all the tools they need to write,
test, and run their software.

Vagrant can be downloaded for Windows, Mac, and Linux from the
Vagrant website [https://www.vagrantup.com/]. Visit the website, then click on the
Downloads link and chose the right version of the software
for your PC’s operating system.

Install it like you would any other software.

You can check if you have the latest version of the Vagrant software
installed correctly by typing in the following command at a
command line:

vagrant version

It should print output similar to the following:

Installed Version: 1.7.2
Latest Version: 1.7.2

You're running an up-to-date version of Vagrant!

Step 2: Install VirtualBox

VirtualBox is used by Vagrant to host virtual machines that contain
all the pieces of our development environment. A virtual machine is a
simulated computer, running inside your actual computer. Vagrant takes
care of setting up the virtual machine, starting and stopping it, and
destroying it when you no longer need it. But you need to install
VirtualBox yourself before Vagrant can do the rest.

VirtualBox can be downloaded for Windows, Mac, and Linux from the
VirtualBox website [https://www.virtualbox.org/]. Visit the website, then click on the
Downloads link. You want to download the VirtualBox
platform package for your PC’s operating system.

Install it like you would any other software.

You can check if you have the latest version of the VirtualBox
software installed correctly by typing in the following command at a
command line:

vboxmanage --version

It should print output similar to the following:

4.3.20r96996

Step 3: Get a Copy of the python-minecraft Repository

The files we use in our CoderDojo workshops are stored on
GitHub. GitHub is organized into repositories, and the
python-minecraft repository [https://github.com/CoderDojoTC/python-minecraft/] contains all the files used for our lab
environment.

The simplest way to get a copy of these files is to download the Zip
file [https://github.com/CoderDojoTC/python-minecraft/archive/master.zip] with all the files from the project. Decompress this file into
a place where you can work on the files, such as a folder under your
My Documents folder on Windows, or your home folder on
OS X. We will refer to this location as your working directory.

Another alternative, if you have installed a version of Git for your
PC, is to clone the repository from GitHub into a working copy on your
PC. The following command, entered at the command line, will
create a copy in a folder named python-minecraft:

git clone https://github.com/CoderDojoTC/python-minecraft.git python-minecraft

Using the Environment

Once you’ve completed the steps above, you have everything in place.
As mentioned above, Vagrant is the tool that assembles all the pieces
and starts and stops environments. This section describes how to use
it.

All the commands in this section are intended to be typed at a
command line. Before continuing, be sure to change to the
appropriate working directory you created with a copy of the
python-minecraft repository. Use the cd command as
follows:

cd python-minecraft

To start your lab environment

The first step is to configure a file in your python-minecraft
folder called private_config.yaml. The easiest way to do this
is to open the file named sample_config.yaml in a text
editor and use the equivalent of File ‣ Save As to
create a copy with the name private_config.yaml. Once you’ve
saved a copy to the new filename, you must edit it to place your
Mojang account name in the appropriate place. You might also want to
replace the default IPython password.

Once the configuration file is in place, start up the environment
using the vagrant up command with the argument
--provider=docker. Together, the two will read vagrant
up --provider=docker. An example of how this looks on an Ubuntu PC
is as follows:

[user@pc:~/python-minecraft]$ vagrant up --provider=docker
Bringing machine 'default' up with 'docker' provider...
==> default: Creating the container...
 default: Name: python-minecraft_default_1424041630
 default: Image: coderdojotc/python-minecraft-student:latest
 default: Volume: /home/user/python-minecraft:/vagrant
 default: Port: 10443:8888
 default: Port: 10565:25565
 default:
 default: Container created: 76984c0ca81b1fd8
==> default: Starting container...
==> default: Provisioners will not be run since container doesn't support SSH.

Note

The first time you execute the vagrant up command
on a PC might take a long time, depending on the speed of
the computer and the speed of your connection to the
Internet. It could take tens of minutes, or maybe even an
hour.

Vagrant downloads software from the Internet to create the
lab server environment. Most of this software is saved on
your computer, so it should be faster when you start it a
second time.

After running the above command, you can pick up with the instructions
in Connect to Your Lab Instance. Since you are running this on
your own PC, you won’t have a lab instance connection
card. Instead, check the table below for the necessary information:

	Information
	Description

	Server Name
	In the classroom documentation, wherever it says
python.coderdojotc.org, use localhost instead. The
name localhost refers to your PC itself.

	IPython URL
	For your local environment, your IPython URL is
https://localhost:10443/.

	IPython
Password
	This is the value you placed in your
private_config.yaml file. It defaults to
fooBARbaz.

	Mojang
Account Name
	This is the value you placed in your
private_config.yaml file. It should be something
like coderdojotc01. It is not your email address.

	Mojang
Server
Address
	For your local environment, this is the value
localhost:10565.

Destroy the virtual machine

To temporarily stop the lab environment, use the vagrant
halt command. You can restart the environment later with the
vagrant up command.

To shut down the lab environment, permanently releasing the memory and
hard drive space it is using, you use the vagrant destroy
command:

[user@pc:~/python-minecraft]$ vagrant destroy
 default: Are you sure you want to destroy the 'default' VM? [y/N] y
==> default: Stopping container...
==> default: Deleting the container...

Any servers you were running will be stopped and your Minecraft world
will be lost. The files you edited in your working directory will
still be present. And you can always recreate the lab environment
using the vagrant up command described above.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Other Setups

Setup for Microsoft Windows

These are the steps to get a full development environment working on a
Windows PC, in roughly the order you should perform them.

Figure Out Your System Type

Some of the software installed below requires the correct choice to be
made between a 32-bit or 64-bit version of the software. You can learn
the proper choice for your computer by checking your Computer
Properties:

	From your desktop, choose Start, then right-click
on Computer and choose
Properties.

	In the window that opens, look for the System type
under System. On a 64-bit system, it will say 64-bit
Operating System.

Note

Remember this value for later.

Working Directory

Much of the work we do will involve a set of files on your
computer. It’s helpful if you organize these into a single
location. On a Windows PC, the default place for user files is in the
Documents folder. We will start from there:

	From your desktop, choose Start ‣ Documents to
open a Windows Explorer view of your Documents folder.

	In the window that opens, right-click in the main window and
choose New ‣ Folder. Give it the name
CoderDojo.

	Double-click into the CoderDojo folder and again,
right-click in the main window and choose New ‣
Folder. Give this one the name MinecraftMod.

Note

From here on, we will refer to this as your
MinecraftMod folder.

	Double-click into the MinecraftMod folder and again,
right-click in the main window and choose New ‣
Folder. Give this one the name CanaryMod.

TortoiseGit and Git for Windows

TortoiseGit is a nice, GUI wrapper for Git on Windows. With this, you
can use Git entirely from within Windows Explorer.

	Visit the TortoiseGit download page [https://code.google.com/p/tortoisegit/wiki/Download]. Select
the appropriate version based on your system type and download
it.

	Once the file has downloaded, run it. You can leave all the
installer options at their defaults. Allow it to install.

	Visit the git for windows download page [http://msysgit.github.io]. Click on the Download
link.

	Once the file has downloaded, run it. You can leave all the
installer options at their defaults. Allow it to install.

	Now is a good time to reboot your PC.

CanaryMod Server

	Visit the CanaryMod download page [http://canarymod.net/releases/canarymod-1710-112].

	Right click on the link to the Jar file and save it within the
MinecraftMod\CanaryMod folder.

	In the MinecraftMod\CanaryMod folder, create a new file
named startserver.bat, and give it the following
contents:

CanaryMod-1.7.10-1.1.2.jar
pause

	In the MinecraftMod\CanaryMod folder, create a new file
named eula.txt, and give it the following contents:

eula=true

Give the CanaryMod server a test run by double-clicking on the
startserver.bat script you created. The
CanaryMod: Minecraft server window should open, and you
should see log messages indicating that the server is running.

RaspberryJuice for CanaryMod

We’re going to use Git to clone the repository where RaspberryJuice
comes from. The Jar file containing the plugin is available in the
repository, so we will copy it from there.

	Visit the GitHub page for the CanaryRaspberryJuice plugin [https://github.com/martinohanlon/CanaryRaspberryJuice].

	On the right-hand side of the page, you will see a field labeled
HTTPS clone URL. Copy the value from here into your
clipboard. It will be something like
https://github.com/martinohanlon/CanaryRaspberryJuice.git.

	Using Windows Explorer, navigate to your MinecraftMod
folder.

	Right-click within the main panel and choose Git
Clone....

	In the window that opens, double check that the URL
field contains the one you copied above, that the
Directory field specifies the
MinecraftMod\CanaryRaspberryJuice folder, and then click
OK.

	After the Clone process finishes, open the
MinecraftMod\CanaryRaspberryJuice\jars folder. Copy the
file named canaryraspberryjuice-1.3.jar into
MinecraftMod\CanaryMod\plugins.

Restart the CanaryMod server again (double-clicking on the
startserver.bat script). This time, among the log messages,
you should see one that reads [INFO]: Enabling
CanaryRaspberryJuicePlugin Version 1.3.

Minecraft

	Visit the Minecraft download page [https://minecraft.net/download].

	Right click on the Minecraft.exe and save it into your
MinecraftMod folder.

	Do the same with the Minecraft_server.1.8.9.exe file. We
plan to use the CanaryMod server instead, but it may be useful to
have the vanilla server for troubleshooting.

	Give Minecraft a test run by opening the MinecraftMod
folder in Windows Explorer. Then double-click on
Minecraft.exe.

	Once the Minecraft Launcher opens, create a new Profile that is
configured to use Minecraft version 1.7.10 (consistent with the
CanaryMod server version).

	Click New Profile.

	In the Profile Editor dialog, change the fields as
follows:

	Field
	Value

	Profile Name
	MinecraftMod 1.7.10

	Use version
	release 1.7.10

Then click Save Profile.

Python 2.7.8 for Windows

	Visit the Python Downloads page for Windows [https://www.python.org/downloads/windows/].

	Be sure to locate the 2.7.8 version of Python, and then select
the right installer based on your system type.

	Once the file has downloaded, run it. You can leave all the
installer options at their defaults. Allow it to install.

CoderDojo TC’s python-minecraft Repository

We’re going to use Git to clone the repository where the CoderDojo
Twin Cities chapter has stored the example Python scripts.

	Visit the GitHub page for the CoderDojoTC python-minecraft
repository [https://github.com/CoderDojoTC/python-minecraft].

	On the right-hand side of the page, you will see a field labeled
HTTPS clone URL. Copy the value from here into your
clipboard. It will be something like
https://github.com/CoderDojoTC/python-minecraft.git.

	Using Windows Explorer, navigate to your MinecraftMod
folder.

	Right-click within the main panel and choose Git
Clone....

	In the window that opens, double check that the URL
field contains the one you copied above, that the
Directory field specifies the
MinecraftMod\python-minecraft folder, and then click
OK.

Environment Shakeout

Now that all the necessary parts have been installed, let’s see if
everything is in working order.

	Shut down the Minecraft game, if it is running. Shut down the
CanaryMod server, if it is running.

	Start the CanaryMod server by double-clicking on the
startserver.bat script you created in the
MinecraftMod\CanaryMod folder.

	Start Minecraft by opening the MinecraftMod folder in
Windows Explorer. Then double-click on Minecraft.exe.

	Once the Minecraft Launcher opens, choose the MinecraftMod
1.7.10 Profile, and click Play.

	Once the game starts, click the Multiplayer
button. Choose the Direct Connect button on the next
page. Enter localhost in the Server Address button
and then press Join Server.

	Once your player has joined the game, from the Windows desktop,
choose Start ‣ All Programs ‣ Python 2.7 ‣
IDLE (Python GUI) to open a Python Shell.

	In the Python Shell, choose File ‣ Open... and
navigate to the MinecraftMod\python-minecraft
folder. Choose hello_world.py.

	Choose Run ‣ Run Module, and look for the
“Hello Minecraft” message within the game.

If you saw the “Hello Minecraft” message, congratulations! You are
ready to proceed. If you ran into any problems with the environment
shakeout, you should examine the error messages you might be seeing,
think about what they might mean, and revisit the appropriate section
of this document. Or, ask for help!

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Other Setups

Setup for Apple’s OS X

Todo

If you are able to help write (or help write) this chapter
of the documentation, please take ownership of the GitHub
issue:
https://github.com/CoderDojoTC/python-minecraft/issues/3

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Other Setups

Setup for Ubuntu Linux

Todo

More to come.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Mentor Documentation

The section contains documentation useful for mentors supporting the
Build worlds in Minecraft with Python code group.

First, please familiarize yourself with the documentation used
by the students during a class, then return to
this document. We’re going to try to avoid repeating ourselves.

Next, review the core overview for mentors:

	Being a CoderDojo Mentor

	Being a Python Minecraft Mentor

	Lessons Learned

After reviewing the material above, you are probably well ready to be
a mentor at a Dojo event. We look forward to seeing you there!

If you are hosting the technology used for a session, you should
consult these guides:

	The Lab Server

The following documentation covers various kinds of project
technology, maintenance, and other tasks:

	Project Technology

	Project Maintenance

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Mentor Documentation

Being a CoderDojo Mentor

What is a Mentor?

Being a CoderDojo Mentor is like being a guide on an adventure. It
helps if you know where you’re going, but more important is a sense of
curiosity and a willingness to work alongside the students as they
learn. We haven’t had a chance yet to find write this guide about
being a mentor at the CoderDojo Twin Cities, but there are lots of
other resources available:

	CoderDojo Twin Cities’ FAQ on Mentoring [http://www.coderdojotc.org/faq/#mentoring], retrieved on February 8, 2015.

	CoderDojo’s Mentor Guide [https://speakerdeck.com/helloworldfoundation/coderdojo-mentor-guide], retrieved on February 8, 2015.

	CoderDojo Brisbane’s Mentors Guide [http://bit.ly/CoderDojoBne_Mentor_Guide], retrieved on February 8, 2015.

	CoderDojo Brighton’s Info for Mentors [http://coderdojobrighton.co.uk/mentors/], retrieved on February 8, 2015.

CoderDojo Twin Cities High-level Overview

Events are usually held once or twice a month. Events are held on the
Saturdays on the University of Minnesota campus.

Students are in the classroom for about two hours, typically between
1:30pm and 3:30pm. Mentors are asked to arrive around 12:45pm to help
with setup, and to stay a bit after to help with cleanup.

Classroom setup includes:

	Selecting the right number of tables for the expected number of
students in each code group. Each table in our usual
classroom holds about nine students comfortably.

	Retrieving the mentor and student name badges for the code
group, and stuffing them in the badge holders.

	For students using classroom laptops, placing the laptops on the
desks, connecting them to power supplies, logging them into the
campus Wi-Fi, and preparing any needed software.

Students may either bring their own laptop, or use one of the
classroom laptops. Classroom laptops are all Apple Macs of varying
vintages. Students arrive with a variety of different kinds of
computers. Most are running some version of Microsoft Windows.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Mentor Documentation

Being a Python Minecraft Mentor

The marketing material for the Python Minecraft code group describes
it as follows:

Use Python, a general purpose programming language, to mod the
popular Minecraft game. Best for coders 10+ or younger with some
experience in programming (like Scratch!)

It recommends that students be between the ages of 10 and 17, with
some experience in programming.

Mentors in this code group ideally have some of the following
experience, though none of these are a hard requirement:

	Python programming.

	IPython usage.

	Minecraft usage.

	Teaching skills.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Mentor Documentation

Lessons Learned

We are attempting to capture lessons learned in the course of
conducting the classroom sessions over time.

Lessons/Thoughts from 2015-01-24

The WiFi setup on name-badges was much easier to manage than trying to
cross credentials off lists. It did take a little more coordination to
get WiFi set up on Dojo-provided PCs. We had to line up the badges on
the appropriate PCs, and then log them in.

We had a lot of students who came without a PC, or without a PC that
could run Minecraft (e.g., one student brought a Chromebook). This put
us behind the curve because several students didn’t have a PC to work
from. We eventually settled on having them join another student with a
working PC, but it was suboptimal.

There are a variety of problems running Minecraft on the PCs:

	We had some student experience crashes upon trying to connect their
PC to the server. They could join servers with 1.8, but on 1.7.10,
they got a java OutOfBounds exception crash.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Mentor Documentation

The Lab Server

If you are responsible for running a lab server that hosts multiple
student instances during a CoderDojo session, this is the guide for
you.

This is currently a pretty cursory explanation for how to setup a lab
server from scratch, and then how to operate it during a CoderDojo
session.

Todo

Need to elaborate on AWS usage, such as how to create an
instance, pick the size and availability zone, configure the
Elastic IP, etc.

In summary, the Lab Server hosts a bunch of Instances. Each student
will get their own Instance. Each Instance hosts a private Minecraft
server, the RaspberryJuice plugin that lets Python talk to Minecraft,
and an IPython Notebook server that can talk to the Minecraft
server. These Instances give each student an isolated environment in
which they can work through lessons and challenges.

To control the instances on the Lab Server, there is a python script
called the Lab Server Controller. It runs on the Lab Server, and it is
responsible for configuring, starting, and stopping individual
Instances. The Lab Server Controller gets its information from the
Control Sheet, which is a Sheet in Google Docs that contains
information about the desired configuration of the various Instances.

While class is in session, Mentors will control the Lab Server and its
instances by making updates to the Control Sheet.

Building the Lab Server AWS Instance

The following steps are needed to create a new lab server instance
using nothing but a standard Ubuntu 14.04 LTS installation and the
contents of the python-minecraft repository.

	Launch an Ubuntu instance in AWS.

	Log in and gain root access.

	Install and configure the essentials:

apt-get install git-core

git config --global user.name "Your Name"
git config --global user.email youremail@example.com

	Clone our repository:

git clone https://github.com/CoderDojoTC/python-minecraft.git python-minecraft
cd python-minecraft
cd lab-server

	Review the lab-server-setup.sh script and tweak it where
needed, then run it:

./lab-server-setup.sh

	Build the student-env-image:

cd student-env-image
docker build -t "coderdojotc.org/python-minecraft-student" .

The Lab Server Controller

The Lab Server Controller is a command line tool that helps manage the
lab server used for teaching the CoderDojo TC’s Python-Minecraft code
group.

The Lab Server Controller (LSC, from here) helps manage the
server. The LSC is embodied in a command named lsc. This
command provides several different operations, which are basically
subcommands. It can be run interactively for some operations. For
others, it is designed to be run as a scripted tool.

For many operations, the LSC pulls its configuration data from a
Google Sheet that follows a pre-defined format. This Sheet, referred
to from here on as the Control Sheet, describes how the containers
should be configured for the students. Keeping this information in a
Google Doc allows it to be easily updated by Mentors in the
classroom. The expected contents are described in detail below in the
section titled Control Sheet Format.

Configuration

Before you can use the LSC command for the first time, create a file
in your current directory named lsc.ini. Populate it with
content like the following:

[Lab Config Sheet]
email = your-google-account-email@example.com
password = YOUR_APPLICATION_SPECIFIC_GOOGLE_PASSWORD
spreadsheet = Lab Server Controller
worksheet = 2014-11-15

[Instances]
instance_data_dir = /mnt
docker_control_url = unix://var/run/docker.sock
sourcecode_repo = https://github.com/CoderDojoTC/python-minecraft.git
docker_image = coderdojotc.org/python-minecraft-student:latest

The spreadsheet value is the name of the Google Sheet that the LSC
should use for its configuration data. The worksheet is the name
of the specific tab within the Sheet.

The email value is the address of the Google Account that the LSC
should use to connect to the Sheet. It will probably be the email
address of the person responsible for setting up and running the
server.

The password field is the password the LSC should use, in
conjunction with the email address of the Google Account, when
connecting to the Google Sheet. It is a terrible, terrible idea to
enter your main Google password in this field. Please consult the
warning below for what to do instead.

Warning

Absolutely everyone ought to be using Google’s
2-factor authentication [https://support.google.com/accounts/answer/180744?hl=en], especially people who need to
write down their password in a configuration file. To
make the LSC tool work when you have it set up, you need
to create an application-specific password [https://accounts.google.com/b/0/IssuedAuthSubTokens?hl=en&hide_authsub=1]. The
password you set up on that page should be the one you
enter in the config file.

Todo

Need to document other values in config file above.

Usage

Normal usage when the lab server is up and running is to log into the
lab server, switch to the root user (who can start and stop Docker
instances), launch a tmux session, then start running the
lab server controller in a loop with a command like the following:

watch -n 10 timeout 60 lsc -v --debug process-commands

If you want to know more about what the lsc command can
actually do, this section describes various usage examples. The name
of the command itself is lsc. Each of the different
subcommands follows lsc on the command line.

Environment Shakeout Commands

The commands in this section help with environment shakeout.

The lsc test command checks the environment. It confirms
that the config file is present. It validates that the information in
the config file allows it to reach the Control Sheet used to manage
the student instances.

Control Sheet Commands

The commands in this section help with managing the Control Sheet.

The lsc show command dumps the contents of the Control
Sheet.

The lsc process-commands command walks through the Control
Sheet and attempts to act on each command in the sheet, as indicated
in the sheet. It also checks the current state of each instance and
updates the appropriate columns in the Control Sheet.

Control Sheet Format

The LSC expects the Control Sheet to follow a certain format, so it
knows where to find the necessary information. Overall, the first row
in the sheet should contain the column headings listed below. Each row
after that describes an Instance.

Here is how the columns expected to be laid out within the sheet:

	Inst #

	This is the numeric identifier of the instance. It should be
unique. It should be an integer greater than zero. Otherwise, it
just provides a short-hand way for people and the LSC to talk about
Instances.

Some of the other columns are calculated based on this identifier,
but it is not a strict requirement.

	Student Name

	This is the name of the student who will be using this instance. It
is here to make it easier to associate an instance with the person
who will be using it.

	Mojang Accounts

	This is a list of one or more Mojang account names that will be
included on the instance’s whitelist. If multiple people should on
the whitelist, separate names with commas. Whitespace is ignored.

The special value of All Accounts indicates that the whitelist
for this instance should be filled with all accounts listed for
other instances. This makes it easy to construct a “Classroom Server”
where any student with a private instance will also be included on
the Classroom Server’s whitelist.

The special value of Open Server indicates that the whitelist
for this instance should be left empty. In this case, Minecraft will
permit anybody to connect.

Warning

Beware that a truly open server can be joined by
anyone. If you don’t want this, you are recommended
to use the whitelist.

	Minecraft Port

	This is the TCP IP port at which the instance’s Minecraft server
will be available. Since the default Minecraft port is 25565, the
default Control Sheet calculates port numbers based off the instance
ID, using 565 as the suffix.

Keep in mind that TCP restricts port numbers to integer values
between 1 and 65,535. Ports between 1 and 1,024 are reserved for
special purposes, so you should make sure the port numbers in this
field fall between 1,025 and 65,535.

Note

Since Minecraft defaults to port 25565 by default,
students who forget to enter their assigned port number
will try reach a server at this port. It is recommend that
you run a specially configured server at this default
port. This server could be open for all students to
participate in (e.g., a Classroom Server), or it should be
configured with no access, and a deny message that prompts
students to enter their assigned port number.

	IPython Port

	This is the TCP IP port at which the instance’s IPython Notebook
server will be available. Since the server runs over HTTPS, which
uses port 443 by default, the default Control Sheet calculates port
numbers based off the instance ID, using 443 as the suffix.

Keep in mind that TCP restricts port numbers to integer values
between 1 and 65,535. Ports between 1 and 1,024 are reserved for
special purposes, so you should make sure the port numbers in this
field fall between 1,025 and 65,535.

	Student Password

	When a student connects to the IPython Notebook server with a web
browser, it will prompt them to enter the password contained in this
column. It is recommended that you generate the passwords in this
list and then provide them to the students along with their assigned
port numbers.

The following command will generate a list of 30, 6-character
passwords, each made up of lowercase letters and numbers, and
excluding some characters that can be easily mistaken for each
other:

apg -a 1 -n 30 -m 6 -x 6 -M ln -E lI10OS

	Instance Type

	The LSC knows how to deploy the instance types listed in the table
below. Use the types listed below in the Control Sheet.

	Instance Type
	Description

	STUDENT
	A normal student instance. Most of the
documentation in this file refers to this
Instance Type.

	REDIRECT
	An instance that denies all access with the
following message “You need to specify your
assigned Minecraft port. Please try again.”

	Command

	This is the way you control the instances. This column should
contain one of the values from the first column in the table
below. The LSC interprets the command you entered and moves the
instance into the desired state when the lsc
process-commands command is run.

	Command
	Description

	RUN
	The instance should be moved to a normal, running state.
This is the state where students can use the instance.

	DOWN
	The instance should be stopped (if running), but the
files will be preserved.

	RESETWORLD
	Stop the instance (if running) and clear out the world
files. This is most useful if the student has
done something horrible to their world and needs a fresh
one to start over.

	RESETNOTEBOOKS
	Stop the instance (if running) and clear out the IPython
notebook files. This is for when the student has
done something horrible to their notebook files and
and needs a fresh set to start over.

	DESTROY
	The instance should be stopped (if running) and all
related files are permanently erased.

	Status As Of

	Timestamp of when the Current Instance State was last updated. This
should be pretty close to the current time. You should not manually
edit this value.

	Container IDs

	Hexadecimal identifiers of the container(s) that make up this
instance. If there are multiple values, they will be separated by
commas. You should not manually edit this value.

	LSC Message

	This column will hold any instance-specific message from the LSC
command. You should not manually edit this value.

	S3 Bucket

	This is the address that will be used by the LOAD and SAVE
commands. More to come as we flesh out this feature.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Mentor Documentation

Project Technology

In the very barest of sketches, this document lays out the different
technologies and resources used for the Python Minecraft code
group.

Technologies

Jupyter

The interface to Python used by the students during our workshop is
the Jupyter Notebook [https://jupyter-notebook.readthedocs.org/en/latest/]. The Python code is embedded in Jupyter
Notebook files, which are the files named *.ipynb in the
source code repository.

The Jupyter project hosts an online notebook viewer [http://nbviewer.jupyter.org] that can turn
these ipynb files into easily readable versions. Just paste any
URL from a GitHub file into the box on the NBViewer site, and and you will
it will generate a linkable result like this one [http://nbviewer.jupyter.org/github/CoderDojoTC/python-minecraft/blob/master/classroom-code/exercises/].

Online Resources

Source Code Repository

Our code repository [https://github.com/CoderDojoTC/python-minecraft] lives on GitHub. This repository is the master
source for the documents, code examples, and scripts and tools used to
support the class.

We try to follow the feature branch workflow in our Git
repository. Atlassian provides a nice overview [https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow] of this workflow.

Mailing Lists

Our mailing list [https://groups.google.com/a/coderdojotc.org/forum/?hl=en#!forum/group-python] is hosted on Google Groups. It is a public group,
open to all.

Project Documentation

The source code for our documentation is in the code repository [https://github.com/CoderDojoTC/python-minecraft]. A
readable, online version is available in our project’s Read the Docs
site [http://coderdojotc.readthedocs.org/projects/python-minecraft/en/latest/]. Any changes to tracked branches in the repository (especially
master) will result in the project documentation being rebuilt so
they are current. The Read the Docs project page [https://readthedocs.org/projects/python-minecraft/] is the
administrative interface for this online version.

Docker Hub

We use Docker Hub to host a public repository that contains the
student image [https://registry.hub.docker.com/u/coderdojotc/python-minecraft-student/] used on the lab server for each student. These images
are built using the Dockerfile contained in
lab-server/student-env-image of our source code
repository. Once built, they are pushed to the Docker Hub so they can
be retrieved by anyone hosting a lab server, or by students using
Vagrant to host an environment on their personal computer.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Mentor Documentation

Project Maintenance

Notes on various maintenance tasks.

Todo

This document needs to be drafted.

Creating/updating documentation

Creating/updating examples

Updating the Student Environment

Building a Lab Server on a Host

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Reference

This section contains reference material and covers other random
topics.

	Overview of the Architecture

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

 	Reference

Overview of the Architecture

There are many different programs and tools involved in these
activities. This document introduces you to these pieces.

	Minecraft

	CanaryMod Server

	RaspberryJuice for CanaryMod

	Git

	Python

	A Text Editor

Minecraft

This is what you run when you start the game itself. Most of the time,
it is actually the Minecraft launcher [http://minecraft.gamepedia.com/Minecraft_launcher], which you have downloaded [https://minecraft.net/download]
from Mojang. This is sometimes referred to as the client, because in
these activities, we will connect it to a separate server that you
will control through Python.

CanaryMod Server

CanaryMod [http://canarymod.net/] is a Minecraft server [http://minecraft.gamepedia.com/Server]. Like the vanilla Minecraft server
from Mojang itself, it can be used to host a multiplayer [http://minecraft.gamepedia.com/Multiplayer] game of
Minecraft. Unlike the vanilla server, CanaryMod has a plugin API which
allows it to be customized by developers. Unlike the CraftBukkit
server, it is still available to download in both source code and
compiled forms (as of October 2014).

RaspberryJuice for CanaryMod

Mojang release a special version of Minecraft (called the Minecraft:
Pi Edition [http://pi.minecraft.net/]) that runs on a small, inexpensive computer called the
Raspberry Pi. This version of Minecraft is special because it is
available to download and use for no cost, and because it comes with
support for modifying the game server’s behavior in multiple
programming languages. The only downside to this special version is
that it requires a Raspberry Pi, and cannot be run on a regular
computer. While a Raspberry Pi is relatively inexpensive, most
students probably already have access to a regular computer than can
run the normal version of Minecraft, so we’ve looked for an
alternative.

The original alternative came from the RaspberryJuice [http://dev.bukkit.org/bukkit-plugins/raspberryjuice/] plugin for the
CraftBukkit server. This plugin supports the same methods for
customizing the server’s behavior as the Minecraft: Pi Edition, but it
can be used with the PC version of Minecraft.

Due to some turmoil in the Bukkit project beginning around early
September 2014, CraftBukkit is unavailable for the time being. The
good news is that the CanaryMod server also has a plugin equivalent
to RaspberryJuice [http://canarymod.net/forum/viewtopic.php?f=33&t=3812], so it is the one we can use.

Git

Git is a developer’s tool [http://git-scm.com/] for keeping track of changes made to
files. These kinds of tools are commonly referred to as Version
Control Systems (VCS) or Source Code Management systems (SCM), because
developers use them to keep track of the files that go into the
programs they write. The examples used in the CoderDojo class are kept
in a Git repository, along with the files that make up the
RaspberryJuice plugin.

Python

Python is the language in which we will develop our mods for
Minecraft. It is free and open source, it runs on pretty much any
computer around. It is both easy for beginners and powerful enough for
very complicated or sophisticated programs.

A Text Editor

Python programs are written in plain text files. As such, you will
need a program that helps create and update these files. There are
many available, and most computers even come with one out of the
box. However, some editors have features that make it easier to read,
write, and test computer programs, so we will select one of those.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Python Minecraft FAQ

Why can’t I...

... change anything in my world?

If you can’t create or destroy blocks in your world through the
Minecraft game itself, you probably need to make sure that your
player has Operator [http://minecraft.gamepedia.com/Operator] status on the game server.

How do I...

... create a new world?

To create a new world, you need to use the /createworld
WORLDNAME to create a world named WORLDNAME. Then use the
command /spawn WORLDNAME to switch to that world. To
create and joing a world named Mine, you would use the
following two commands:

/createworld Mine
/spawn Mine

The world you are in when the game starts it called default. To
return to it, you would use the command /spawn default.

Why is...

... my network connection so slow?

You might have connected via Wi-Fi to UofM Guest instead of
UofM Secure. The Guest network has much less bandwidth, and
is too slow for most useful work.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Glossary

	code group

	Code groups are topics in the Twin Cities’ CoderDojo. When
students sign up to attend, they indicate interest in three
different code groups. They get assigned to a specific code
group once the number of mentors is known. This usually happens
a couple of days before the event.

	command line

	The command line is the place where you type commands and your
computer executes them. On Windows, you need to launch the
Command Prompt. On Ubuntu Linux and on OS X, you can
launch a program called Terminal.

	lab instance

	In the hosted environment we use for the CoderDojo classes, each
student has a private instance that contains a Minecraft server
and world, an IPython notebook server, and copies of Python
scripts with exercises and example programs.

	lab instance connection card

	A piece of paper that has the address of your private Minecraft
server, the address of your private IPython notebook server, and
the password needed to connect to it.

	text editor

	A text editor is a program that is lets a user edit plain text
files. Most programs are stored in plain text files, so computer
programmers often use text editors to create and change these
files.

On a Windows PC, the text editor that comes with the Windows
itself is called Notepad. On a many versions of
Linux, a program named gedit is often installed. On
Mac OS X, the text editor is commonly called
TextEdit.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Documentation Needing Work

The following is an auto-generated list of documentation files with a
“to do” note in them (.. todo:: Your note goes here...). If you
are looking for something to do, this could give you some ideas.

Todo

Need to elaborate on AWS usage, such as how to create an
instance, pick the size and availability zone, configure the
Elastic IP, etc.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/python-minecraft/checkouts/latest/docs/mentors/lab-server.rst, line 13.)

Todo

Need to document other values in config file above.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/python-minecraft/checkouts/latest/docs/mentors/lab-server.rst, line 136.)

Todo

This document needs to be drafted.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/python-minecraft/checkouts/latest/docs/mentors/maintenance.rst, line 7.)

Todo

If you are able to help write (or help write) this chapter
of the documentation, please take ownership of the GitHub
issue:
https://github.com/CoderDojoTC/python-minecraft/issues/3

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/python-minecraft/checkouts/latest/docs/other-setups/osx.rst, line 5.)

Todo

More to come.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/python-minecraft/checkouts/latest/docs/other-setups/ubuntu.rst, line 7.)

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Release Notes

The following changes have been made to the classroom materials over
time. Look for annotated Git tags that match the headings below.

The full changelog [https://github.com/CoderDojoTC/python-minecraft/commits/master] is available on GitHub.

Unreleased Changes

	Merged several documentation fixes from Markus Khouri [https://github.com/markuskhouri]. Thanks
Markus!

	Began migrating documentation into the Jupyter/IPython
notebook. This gives the students a more integrated path through the
course, with less jumping between the static docs and the live
environment.

	Added some tools to help with course content development:
	Added a requirements.txt file for use in setting up a
Python environment with the necessary tools.

	Added a Fabric [http://www.fabfile.org/] script (fabfile.py) to help automate
tasks performed while developing and delivering the course.

2015-08-01

	Fixed the lab server controler to work with the latest version of
gspread, which requires OAuth2.

	Changed the source location where we pull the Canary JAR file. The
CanaryMod project is going through some changes, and have
reorganized where files are available on their web server.

	Added a dirty hack to work around a problem that Canary seems to be
having in determining the UUID of the players listed in ops.txt on
startup. I’ve had to put this reactive code in the run-canary.sh
script to do the job after the player joins the server. A better
long-term fix is to find the root cause in Canary itself.

2015-05-09

	Upgraded to CanaryMod 1.2.0 (compatible with Minecraft client
version 1.8), version 1.3 of the RaspberryJuice plugin, and the
latest python libraries that support them. This brings some new
programming capabilities, such as being able to have Python code
receive messages from the game chat.

	Added Martin O’Hanlon’s Minecraft Turtles so that students can use
the library and run the examples. This gives students a logo-like
model for writing programs.

	Upgraded to IPython 3.1.0. This improves the development user
interface. It also changes the “branding” of the development UI from
“IPython” to “Jupyter”.

	Removed many calls to the obsolete server module from example
scripts in the examples folder (thanks to Joshua Fasching).

	Fixed a problem where it seemed to rain in Minecraft from time to
time.

2015-02-21

	Simplify the generated world in the student lab instance to make it
better for programming projects. Now, the students are placed in a
“FLAT” world (no terrain, no biomes, no structures, no mobs, etc.),
and the weather is clear.

	Reorganized the exercises and examples into subfolders, and
converted all the previous *.py files into *.ipynb
files so students can load them directly in IPython.

	Improved our classroom exercises:

	Exercise 1: Reformatted Hello World to be a single code block
so that it’s easier to run, added some hints, and added some extra
challenges.

	Exercise 2: Took out the TNT Pyramid (which was too big and
distracting), pointed students to the online help and guided tour,
wrote more about added the REPL environment.

	Exercise 4: Added a delay so students have a chance to observe
what is happening as the script runs, added some extra challenges.

	Exercise 5: Added a field of wool so students have something
that will react to sword strikes.

	Updated some example scripts to work better in our new student
environment.

	Upgraded to CanaryRaspberryJuice version 1.2. This added methods
such as getPlayerId(playerName), getDirection(), getRotation(), and
getPitch(). This also includes version 1.1, which added various
entity methods.

	Upgraded to IPython version 2.4 in the student lab server
instance. This is a significant upgrade from the prior version,
which was IPython 1.3. The main student-visible differences are that
IPython can now navigate between directories, and the Notebook
web UI now has separate Edit and Command modes.

	The docs for setting up a local, Vagrant-based lab environment have
been updated to work much better. It now uses exactly the same
environment and setup that students get when attending a CoderDojoTC
event. The solo-server docs and files have been removed.

	The Lab Server Controller now accepts the name of a docker image
(and version tags) in its configuration file. This makes it possible
to use different lab images in different environments, which is
particularly useful in testing a new image before committing to
using it for a specific CoderDojo event.

	Lots of documentation updates, including new docs for Mentors.

	For people working on updating exercise or example code through the
IPython notebook interface, launching a student lab instance with
Vagrant will now copy the local working directory into the folder
where IPython can edit the files. If there is no Vagrant-provided
folder, the code will be retrieved from the Git repository specified
in the private_config.yaml file.

By itself, this copy from Vagrant into the IPython notebook folder
is a one-way-street. Edits made there will not be visible on the
Vagrant host (where they can be committed to source code
control). However, there is also a script installed in the image
called sync-notebooks.sh. It can be run as follows from
the Vagrant host, and it will invoke Unison to sync up the changes:

docker exec -it python-minecraft_default_1424407654 sync-notebooks.sh

2015-02-07

	The table of contents and navigation between chapters has been
improved. Some of the section index pages have been improved.

	Improved the layout of the Lab Instance Connection card, and its
related documentation.

	Some unnecessary documentation files have been removed.

2015-01-24 and Before

Release notes are unavailable prior to the February 7, 2015
session. Please consult the git log [https://github.com/CoderDojoTC/python-minecraft/commits/master] for details of prior releases.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	CoderDojo Twin Cities Python for Minecraft 1.0 documentation

Index

 C
 | L
 | P
 | T
 | W

C

 	

 	code group

 	

 	command line

L

 	

 	lab instance

 	

 	lab instance connection card

P

 	

 	player.getPos() (built-in function)

 	

 	player.setPos() (built-in function)

T

 	

 	text editor

W

 	

 	world.getBlock() (built-in function)

 	world.getHeight() (built-in function)

 	world.postToChat() (built-in function)

 	

 	world.setBlock() (built-in function)

 	world.setBlocks() (built-in function)

 Created using Sphinx 1.3.1.

 _images/ipython-notebook.png
IP): Notebook =

PR — s &
-

_images/coordinates.png

_images/lab-instance-connection-card.png
Build worlds in Minecraft with Python
Lab Instance Connection Card

Step 1: Open and Review the Documentation
= Visit http://goo.gl/8Kw9ea, under the heading In the Classroom?

Step 2: Connect to the IPython Notebook
= Open your web browser: Chrome, Firefox, or IE 11, not Safari, and visit:
https://python. coderdojotc.org:17443/.
= The browser will probably complain that it doesn’t trust the site. Proceed past
the warnings. Enter bak312 as the IPython Password when prompted.

Step 3: Connect to the Minecraft Server as _

* Click “Play” to launch a profile for version release 1.7.10.
* Choose “Multiplayer”, then “Direct Connect”, enter this Server Address:
python. coderdojotc. org: 17565, and then click “Join Server”.

Instance 7

_images/minecraft-profile.png
Profile
Profilcinfo
ProfileName: CoderDojoTC for 1.8

Game Directory:

Resolution x
@ Automaticaly ask Mojang For ssistance with Fiing crashes
) Launcher Visbitky:
Version Selection

Enable experimental development versions (‘snapshots’)

) Allow use of old "Beta” Minecraft versions (From 2010-2011)

Tava Settings (Advanced)
Executable:

M Arguments:

Cancel) Open Game Dif] save Profile

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_images/programming-environment.png
Server
python.coderdojotc.org

Your Laptop Student Instance 1
- Canary Server (Minecraft)
Minecraft Port pbython.coderdojotc.org:MC_PORT
Port
Port
Web Browser pot Python Notebook Server

https://python.coderdojotc.org:IPY_PORT/

Student Instance 2

Student Instance ..

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		CoderDojo Twin Cities Python for Minecraft 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.1.

_static/comment-bright.png

_images/hello-world-notebook.png
IPIy): Notebook Exeriss 1 ~Helo Wordl s

8 xa6 a0 e

Hello World! m

Trelo worldpegonispets T [E—

L S -

O R e e

L R T ——

0 e

[T —

0112 e pontacnat o miecratr*)

_images/hello-world-minecraft.png

